Automatic differentiation techniques

Simulation of massively controlled space telescopes

Mauro Manetti, Pierangelo Masarati, Marco Morandini and Paolo Mantegazza

Dipartimento di Ingegneria Aerospaziale – Politecnico di Milano
Inside ANTASME

<table>
<thead>
<tr>
<th>WP number</th>
<th>Workpackage title</th>
<th>Start month</th>
<th>End month</th>
<th>Leading participant n.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (C)</td>
<td>LOM 1 (C) Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano DIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LOM Dipartimento di Elettronica e Informazione, Politecnico di Milano DEI</td>
<td>1</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>LOM University of Bergamo UNIBG</td>
<td>1</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>LOM Carlo Gavazzi Space SpA CGS</td>
<td>1</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>LOM A.D.S. International ADS</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>NBR University of Eindhoven TUE</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>CAT CENTRE INTERNACIONAL DE MÉTODES NUMÉRICAS EN ENGINYERIA CIMNE</td>
<td>1</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>CAT COMPASS INGENIERIA Y SISTEMAS COMPASS</td>
<td>1</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>CAT QUANTECH ATZ QUANTECH</td>
<td>3</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Dissemination of results</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>
WP2 - Automatic differentiation techniques

Implicit code:

- Set of nonlinear equations \(f(x) = 0 \)
- Jacobian matrix \(J = \frac{\partial f}{\partial x} \) (cumbersome)

Rapid elements prototyping

- Code \(f(x) = 0 \)
- Let the code compute \(J \)

MBDyn:

- Multibody code
 - GPL
 - C++

http://www.aero.polimi.it/~mbdyn
WP2 - Automatic differentiation techniques

Automatic differentiation techniques:

- Analysis of source code (Fortran/C)
- Tape of operations (operator overloading, C++)

Requirements:

- Instrumentation of the code (operations/loops/conditions)
- Use of custom data type
- Template (C++)

Result:

- Source code analysis: compiled
- Callable subroutine: run-time
WP2 - Survey of available libraries

<table>
<thead>
<tr>
<th>Tool</th>
<th>Language</th>
<th>License</th>
<th>Source code</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF95</td>
<td>Fortran77/Fortran95</td>
<td>Custom non-profit</td>
<td>Yes $</td>
<td>Code analysis?</td>
</tr>
<tr>
<td>ADIC</td>
<td>C/C++</td>
<td>?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ADIFOR</td>
<td>Fortran77</td>
<td>Custom non-profit</td>
<td>Yes</td>
<td>Code analysis?</td>
</tr>
<tr>
<td>AdiMat</td>
<td>MATLAB</td>
<td>To be defined</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ADOL-C</td>
<td>C/C++</td>
<td>CPL</td>
<td>Yes</td>
<td>Tape</td>
</tr>
<tr>
<td>AUTO_DERIV</td>
<td>Fortran77/Fortran95</td>
<td>Custom non-profit</td>
<td>Yes $</td>
<td>Code analysis?</td>
</tr>
<tr>
<td>CppAD</td>
<td>C/C++</td>
<td>CPL/GPL</td>
<td>Yes</td>
<td>Tape</td>
</tr>
<tr>
<td>FAD</td>
<td>C/C++</td>
<td>Teaching, non profit</td>
<td>Yes</td>
<td>Tape?</td>
</tr>
<tr>
<td>FADBAD/TADIFF</td>
<td>C/C++</td>
<td>Custom non-profit</td>
<td>Yes</td>
<td>Tape</td>
</tr>
<tr>
<td>GRESS</td>
<td>Fortran77</td>
<td>?</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>OpenAD</td>
<td>Fortran77/Fortran95</td>
<td>?</td>
<td>No? (EDG front end)</td>
<td>Code analysis</td>
</tr>
<tr>
<td>TAMC</td>
<td>Fortran77</td>
<td>Non-profit</td>
<td>No</td>
<td>Code analysis?</td>
</tr>
<tr>
<td>TAPENADE</td>
<td>Fortran77/Fortran95</td>
<td>?</td>
<td>No</td>
<td>Code analysis?</td>
</tr>
<tr>
<td>TaylUR</td>
<td>Fortran95</td>
<td>Custom non-profit</td>
<td>Yes $</td>
<td>Code analysis?</td>
</tr>
<tr>
<td>TOMLAB/MAD</td>
<td>MATLAB</td>
<td>?</td>
<td>$$</td>
<td>Tape</td>
</tr>
</tbody>
</table>
WP2 – Coding effort

- Once for all: enable the code

```cpp
double Mat3x3::dDet(void) const
{
    double* p = (double*)pdMat;

    return p[M11]*(p[M22]*p[M33]-p[M23]*p[M32])
    +p[M12]*(p[M23]*p[M31]-p[M21]*p[M33])
}
```

```cpp
template<class T>
T Mat3x3T<T>::dDet(void) const
{
    T* p = (T*)pdMat;

    return p[M11]*(p[M22]*p[M33]-p[M23]*p[M32])
    +p[M12]*(p[M23]*p[M31]-p[M21]*p[M33])
}
```

```cpp
typedef Mat3x3T<double> Mat3x3
```

- **Element level: \(J \) (requires \(f \))**

```cpp
std::vector<T> y_dep(12);
CppAD::Independent(x_indep);
res_vec(p, x_indep, y_dep, pEl->GetLabel());
CppAD::ADFun<doublereal> f(x_indep, y_dep);
.....
J = f.Jacobian(xx); //Compute J(x)
```

```cpp
//declare dep variables
//declare indep variables
//compute f(x)
```
WP2 - Status and future work

Integration almost finished

- Templatize MBDyn: double vs. CppAD<double>
- Elements

Issues

- Rotation:
 - SO(3) -> nonlinear \(\mathbf{x} \) / body orientation
 - handled outside elements

Automatic elements

- Wheel
- Complex joint (gimball?)

Accuracy and timing tests
WP5 - Simulation of massively controlled space telescopes

- Carlo Gavazzi Space SpA
- Structural design
- A.D.S. International
- Active mirror actuators
- DIA
- Mirror deployment simulation
- Active mirror control

Images credit Carlo Gavazzi Space
WP5 – space telescope active control

- Active mirror
- Mirror
- Back-plate
- 186 co-located actuator-sensor pairs
- 2 Hz

Images credit Carlo Gavazzi Space
WP5 – space telescope active control

Background:
- MMT active secondary mirror
- Feed-forward
- Decentralized PID2

Simulation code:
- Modal dynamic
- Off-line mirror stiffness identification
- Gain optimization

- Rigid body movement?
- Non-controllable mirror flapping?
WP5 – space telescope feed-forward concept

- Static feed forward: 2 Hz
- Computed recursively
 \[\Delta f = K(x^{k+1} - x^k_{avg}) \]
- Robust vs. \(K \)
- Requires: estimate of \(K \)
 - Identification
- Stability: PID2 (500 Hz)
WP5 – space telescope work

- Done:
 - Modified preliminary FEM model (from CGS)
 - Use actuators response function (from A.D.S.)
 - Data extraction
 - K identification

Images credit Carlo Gavazzi Space
WP5 – space telescope work

• Ongoing:
 • Gain optimization

• ToDo:
 • Improve actuator model
 • Attitude control
 • Attitude and deformable mirror controls
 • Simulation of mirror deployment
 • Disturbance rejection
WP9 - Dissemination

http://www.aero.polimi.it/Antasme

Send us your
• Presentations
• Documents
• WPs